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Chapter 3. Molecular Clouds 
Notes: 
• Most of the material presented in this chapter is taken from Stahler and Palla (2004), 

Chap. 3. 

3.1 Definitions and Preliminaries 
We mainly covered in Chapter 2 the Galactic distribution of the atomic gas and the dust. 
We now want to concentrate on the molecular content of the Galaxy, and determine its 
main characteristics as is done through observations. Although we postpone a more detail 
study of the modes and types of radiation emanating from molecules in molecular clouds, 
we first give a brief account of the manner with which astronomers present the 
corresponding observations.  

3.1.1 Spectral Velocity and Antenna Temperature 
As was mentioned in Chapter 1, because of the very low ambient temperature present in 
star-forming regions molecular radiation is detected through rotational transitions. 
Examples of such detections are shown in Figure 3.1 for OMC-2. The first things that can 
be noticed from this figure are the units used for the axes.  

The abscissa does not use the frequency as a unit, contrarily to what might have been 
expected for a spectral line profile, but the velocity (in km/s). This choice can be easily 
understood by considering the (non-relativistic) Doppler formula 
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, and c  are the observed frequency, the frequency of the line in the 

rest frame (rest frequency), the velocity of the molecules along the line-of-sight to the 
observer, and the speed of light, respectively. Examination of equation (3.1) reveals that 
the only quantity that does not change as a function of the choice of the observed line 
(besides the speed of light) is the velocity v

r
. This quantity is only a function of the 

motion of the emitting/absorbing molecules and is, therefore, ideal to characterize it. This 
velocity is usually referenced to that of the solar neighborhood; we then speak of the 
velocity relative to the local standard of rest v

LSR
. We see from Figure 3.1 that OMC-2 

is moving away from the Sun at a speed of approximately 11 km/s.  

The choice for the antenna temperature T
A

!  (in degree Kelvin) is explained as follows. 
We first rewrite equation (2.25)  
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which corresponds to the line intensity only, since we have removed any contribution 
from the background (assumed to be a continuum). 
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Figure 3.1 – Detections of molecular rotational transitions in OMC-2. 
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Let us now assume that the source function can be adequately approximated by a Planck 
function of temperature T

ex
, which corresponds to the rotational excitation temperature 

of the molecules responsible for the spectral line. That is, we write 
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Accordingly, we will also model the intensity of the line with a Planck function at the so-
called brightness temperature T

B
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Inserting equations (3.3) and (3.4) into equation (3.2), and taking the Rayleigh-Jeans 
limit (i.e., we set 

 
h! ! k

B
T ) for the two Planck functions we find that  
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The line is thus assigned a temperature for its intensity. It should be noted that this 
definition for the brightness should be corrected when the Rayleigh-Jeans approximation 
is not warranted for. We must also take into account the facts that i) our telescope is not 
perfect (i.e., it will not detect every photon coming its way) and has a beam efficiency ! , 
and ii) the region studied of apparent angular size !

S
 (i.e., solid angle on the sky) can be 

smaller than the telescope spatial resolution !
A

 (we then say than the source is 
unresolved spatially). We, therefore, relate the antenna and brightness temperatures with 
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It is also common to use the main beam temperature T

mb
 when the size of the source is 

uncertain, then 
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That is, the measured antenna temperature is only corrected for the known beam 
efficiency, and the brightness temperature cannot be recovered with certainty.  
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3.1.2 The Virial Theorem 

Let us concentrate on a quantity Q x,t( ) , which can vary with time and position. An 
observer moving at a velocity v  would measure the changes in Q  as function of time 
along its path to be 
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Using Taylor expansions to approximate the terms contained in the brackets we get 
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or more compactly 
 

 
dQ x,t( )

dt
=
!Q x,t( )

!t
+ v "#( )Q x,t( ).  (3.10) 

 
In general, the total time derivative is defined by 
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and it is often called the Lagrangian derivative. This is the form of the time derivative 
that must be used in the equation of motion of fluids, for example, since it takes into 
account variations due to both implicit time dependencies (i.e., ! !t ) and motions (i.e., 
v !" ). 

Keeping this in mind, we write the equation of motion for an incompressible fluid of 
velocity u  (incompressibility implies that ! "u = 0 ) as 
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where !  is the density, p  is the pressure, !  is the gravitational potential, j  is the 
current density, and B  the magnetic field, respectively. It maybe surprising that last term, 
for the magnetic Lorentz force, could apply to the weakly ionized (but globally neutral) 
plasma of a molecular cloud (the ionization fraction can range from 10!9

< " < 10
!6 ), but 

it can be proven that it is appropriate (as you will have to show in the first assignment). It 
can also be shown that the Ampère/Maxwell Law can be adequately simplified and 
approximated by neglecting displacement currents so that 
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Inserting equation (3.13) into equation (3.12) yields the following (using the well-known 
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We see in equation (3.14) the appearance of the magnetic pressure B2 8!  on the right-
hand side. The last term is due to magnetic tension in the field. 

We will not provide the detail here (see Appendix D of Stahler and Palla), but it can be 
shown that integration of equation (3.14) over the entire volume occupied by the fluid, 
while using the equation of continuity 
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and Poisson’s equation for the gravitational potential 
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yields the virial theorem  
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for something resembling the moment of inertia, the kinetic energy in bulk motion, the 
thermal energy, the gravitational potential energy, and the magnetic energy, respectively. 
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Table 3.1 – Physical Properties of Molecular Clouds 

Cloud Type A
V

 n
tot

 L  T  M  Examples 

 (mag) ( cm!3 ) (pc) (K) (
 
M
!

)  

Diffuse 1 500 3 50 50 !  Ophiuchi 

Giant Molecular Cloud 2 100 50 15 10
5  Orion 

Dark Clouds       

Complexes 5 500 10 10 10
4  Taurus-Auriga 

Individual 10 10
3  2 10 30 B1 

Dense Cores/Bok Globules 10 10
4  0.1 10 10 TMC-1/B335 

3.2 Giant Molecular Clouds 
Most of the star formation in our Galaxy happens in GMCs, which contains 80% of its 
molecular hydrogen. 
 
The star formation efficiency, which is the ratio of the stellar mass to host cloud mass, is 
approximately 3%. This translates into a rate of about 

 
2M

!
 yr

!1  for the Galaxy. 
 
All of the OB associations ever observed reside in a GMC. As we already know, these 
high-mass stars are always accompanied by a much larger number of low-mass stars. 
These associations are also very crowded (or clustered). 
 
It is also believed that these same stars are responsible for the destruction of GMCs. This 
would be due to their strong stellar and radiation winds. 
 
The mass of a molecular cloud can be determined by integrating the brightness 
temperature over the line profile observed for a given molecular species; e.g., CO. 

3.2.1 Internal Clumps   

Maps of GMCs made with optically thin transitions of molecular species such as 13CO  
reveal a rather internal clumpy structure.  
 
These internal clumps are identified as “individual dark clouds” in Table 3.1. 
 
For the Rosette Molecular Cloud these clumps regions of enhanced density of about 550 
cm

!3  on average, 1.5 pc in radius, and 
 
250 M

!
 in mass. More precisely, these clumps 

have a mass distribution that falls off as a power law 
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where 

 
N

°
 is a constant and 

 
M
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!
. The fact that the same type of distribution 

also applies for the masses of GMCs as a whole is perhaps not too surprising, since 
GMCs are made of an ensemble of clumps that follow the distribution given in equation 
(3.19). 
 
These clumps also have an apparently random velocity distribution. For the Rosette 
Molecular Cloud, for example, the mean line-of-sight velocity is +13 km/s  with a 
standard deviation of 2.3 km/s .  
 
The typical temperature of a clump is approximately 10 K. 

3.2.2 Atomic Component 
The interclump medium is occupied by gas of lower-density, part of which is made of 
atomic gas at a temperature the temperature of the clumps (i.e., 20 K to 40 K). Very little 
gas mass is contained in this interclump medium. 
 
GMCs also exhibit massive envelopes of atomic hydrogen, which can extend over sizes 
several times that of the ensemble of clump complexes that compose them. These 
envelopes have masses comparable to the complexes. Their temperature ranges from 50 
K to 150 K, similar to that of HI clouds within the Galaxy. 
 
It is thought that molecular clumps could form from the condensation of atomic gas from 
the envelope and the subsequent self-shielding from surrounding ultraviolet radiation. 
This self-shielding allows for the formation of molecular hydrogen on the surface of dust 
grains. 

3.2.3 Giant Molecular Cloud Support Against Gravity 
If we assume for a moment that there is no support against gravity within a GMC, then 
we can simplify equation (3.17) for the virial theorem to approximately 
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Setting I ! MR2  we find the free-fall time t

ff
 to be approximately 
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The time thus calculated for a GMC (a few times 10 Myr) turns out to be on the same 
order as its lifetime. This implies that clouds should be observed to be collapsing if they 
were in free-fall that is. But since there is no observational evidence for any kind of 
global shrinking (through the distribution of clump velocities, for example), we conclude 
that GMCs are under some sort of virial equilibrium. We thus approximate equation 
(3.17) with  
 
  2T + 2U +W +M = 0.  (3.22) 
 
Since the gravitational energy is the only quantity in this equation that is negative, we 
must identify which of the remaining terms that contribution to supporting the cloud 
against gravity. We first calculate 
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which makes it clear that thermal motions do not provide significant support in GMCs. 
We now turn to 
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where the volume of GMC was assumed to be spherical. We, therefore, find that unlike 
thermal pressure, magnetic pressure (and energy) is an important source of support 
against the cloud’s self-gravity.   

Finally, we turn to kinetic energy due to bulk motions 
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where the velocity dispersion !v  is taken to be 3  times that of the measured line-of-
sight velocity dispersion (i.e., we assume isotropicity). We, therefore conclude that in 
GMCs 
 
 

 
T ! M ! W .  (3.26) 

3.3 Dense Cores and Bok Globules 
Molecular clouds as a whole share another very interesting characteristic. That is, if one 
plots the turbulent velocity dispersion ! , as measured by the spectral line width, as a 
function of the cloud size L  for each member of the set, we find that it scales with a 
simple power law 
 
 !

2
= bL

n
,  (3.27) 

 
where b and n  are constants that can vary from one ensemble to another. Such an 
example is shown in Figure 3.2 for a large number of clouds; a least square fit to these 
data yielded n = 0.76  and b = 1.21 km2  s!2  pc!0.76 , where !  and L  are measured in 
km s

!1  and pc, respectively. 
  

Figure 3.2 – The velocity dispersion versus diameter for an ensemble of molecular 
clouds (Larson 1981, MNRAS, 194, 809).  
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A scaling relation such as that in equation (3.27) is reminiscent of the Kolmogorov Law 
for the turbulent velocity versus length scale for homogeneous turbulence. For example, 
we refer to Table 3.1 and assign a fiducial length scale of 25 pc to a GMC we find a 
velocity dispersion of approximately 3.7 km/s, which is in line with what we would 
expect (see equation (3.25)). For comparison we move on to an individual dark cloud 
with a size of 1 pc and we find a velocity dispersion of 1.1 km/s. The turbulent velocity 
dispersion (and the spectral line width) scales with the size of the cloud. 

We can turn equation (3.27) and investigate what size should a molecular cloud have 
such that the turbulent velocity dispersion equals the thermal velocity dispersion, which 
is given by 
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where we used µ = 2.4  for the mean particle mass. We then calculate  
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for the scaling law pertaining to the data shown in Figure 3.1. Again referring to Table 
3.1, we find that this cloud size (i.e., 0.1 pc) at temperature (i.e., 10 K) correspond 
exactly to dense cores and Bok globules. These entities, which usually comprise several 
solar masses of gas, are sites where individual star form (or at most a few).  

Dense cores are at the low end of gas structures associated to GMCs. More precisely, 
dense cores are found within individual dark complexes, which in turn populate GMCs. 
On the other hand, Bok globules are isolated entities that are not embedded within larger 
complexes. 

Finally, let us now go back to our previous comparison of the different types of energies 
against the gravitational energy and adapt them to dense cores and Bok globules. More 
precisely, we adjust it to measured quantities for perhaps the best-studied dense core 
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and 
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We, therefore, see that the different energies are of comparable magnitude for these 
objects. More importantly, thermal pressure does provide a significant amount of support 
against gravity, unlike for GMCs.  


